Examples Coming Soon!
The following are the seven indeterminate forms. \begin{array} {|r|r|}\hline \frac{0}{0} & \frac{\infty}{\infty} & 0\cdot\infty & \infty-\infty & 0^{0} & 1^{\infty} & \infty^{0} \\ \hline \end{array} \[\] If \(\mathop {\lim }\limits_{x \to a} \frac{f\left(x\right)}{g\left(x\right)}\) is equal to either \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then \( \mathop {\lim }\limits_{x \to a} \frac{f\left(x\right)}{g\left(x\right)}=\mathop {\lim }\limits_{x \to a} \frac{f'\left(x\right)}{g'\left(x\right)}\). This is known as L'Hôpital's rule. If the limit is equal to one of the other indeterminate forms, you must algebraically manipulate so that the limit yields either \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\). \[\] If the limit is equal to \(\infty-\infty\), the indeterminate difference, then we can algebraically manipulate by finding a common denominator, rationalizing it, or factoring out a common factor. If we do one of the three, the limit should then yield either \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\) and we will be able to use L'Hôpital's rule. \[\] If the limit is equal to \(0\cdot \pm\infty\), the indeterminate product, then we can algebraically manipulate the function by using the following formulas. \[\mathop {\lim }\limits_{x \to a} f\left(x\right)g\left(x\right) =\mathop {\lim }\limits_{x \to a} \frac{f\left(x\right)}{\frac{1}{g\left(x\right)}} \] \[\mbox{or}\] \[\mathop {\lim }\limits_{x \to a} f\left(x\right)g\left(x\right)=\mathop {\lim }\limits_{x \to a} \frac{g\left(x\right)}{\frac{1}{f\left(x\right)}}\] Doing so will yield either \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), which in turn will allow us to use L'Hôpital's rule. \[\] If the limit is equal to \(0^{0}\), \(\infty^{0}\), or, \(1^{\infty}\) (the indeterminate powers) and the function is in the form \(y=f\left(x\right)^{g\left(x\right)}\), we can algebraically manipulate in the following way so that the limit yields either \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\) . \[y=f\left(x\right)^{g\left(x\right)}\] \[\ln\left(y\right)=\ln\left(f\left(x\right)^{g\left(x\right)}\right)=g\left(x\right)\ln\left(f\left(x\right)\right)\] \[e^{\ln\left(y\right)}=e^{g\left(x\right)\ln\left(f\left(x\right)\right)}\] \[y=e^{g\left(x\right)\ln\left(f\left(x\right)\right)}\] L'Hôpital's rule can only be used with the seven indeterminate forms.
Evaluate the following limit.
\[\mathop {\lim }\limits_{x \to 2}\frac{\sin\left(\pi x\right)}{x^{2}-5x+6}\]
Evaluate the following limit.
\[\mathop {\lim }\limits_{x \to 2} \frac{2x^{3}+2x^{2}\ +2}{8x^{2}+9x^{3}+4x}\]
Evaluate the following limit.
\[\mathop {\lim }\limits_{x \to 5} \frac{\sqrt{x+20}-5}{x-5}\]
Evaluate the following limit.
\[\mathop {\lim }\limits_{x \to 1^+} \frac{3}{x-2}-\frac{2}{\ln\left(x-1\right)}\]
Evaluate the following limit.
\[\mathop {\lim }\limits_{x \to \infty}\left(e^{x}+x\right)^{\frac{1}{x}}\]
Evaluate the following limit.
\[\mathop {\lim }\limits_{x \to 0^+}\left(\tan\left(3x\right)\right)^{x}\]
The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create content.
A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!
Headings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.