What are the dimensions of the largest rectangle that can be inscribed in a semicircle of radius \(r\)?
Start by creating a diagram.
Once again, in our diagram, we represented the length of the rectangle with \(2x\): however, using just \(x\) will also work to represent the whole length.
Find the equation of the positive semicircle:
The equation of a circle with a radius \(r\) is \(x^2+y^2=r^2\).
To get the equation we need to first solve for \(y\)
\[y^{2}=r^{2}-x^{2}\] \[y=\pm\sqrt{r^{2}-x^{2}}\]
The equation for a positive semicircle is just \(y=\sqrt{r^{2}-x^{2}}\)
Create an expression for the area of the rectangle:
\[l=2x\] \[w=y\] \[\therefore\] \[A(x)=2xy\]
Once again we can't maximize a function of two variables; therefore, we need to represent the area function in terms of only \(x\). To do this let's take a look at \(y\). Since the rectangle is inscribed inside the parabola, the width, \(y\), is just the value of the semicircle at \(x\); therefore, \(y=\sqrt{r^{2}-x^{2}}\). Let's substitute this in for \(y\) in the area function.
\[A(x)=2x\sqrt{r^{2}-x^{2}}\]
Now we can maximize the area function.
Maximize the area function:
- Find the critical points \[\mbox{Find the derivative using the product rule}\] \[A'\left(x\right)=2\sqrt{r^{2}-x^{2}}+\left(2x\right)\frac{-2x}{2\sqrt{r^{2}-x^{2}}}\] \[=2\sqrt{r^{2}-x^{2}}+\frac{-2x^{2}}{\sqrt{r^{2}-x^{2}}}\] \[\mbox{Find where the derivative is equal to 0}\] \[2\sqrt{r^{2}-x^{2}}+\frac{-2x^{2}}{\sqrt{r^{2}-x^{2}}}=0\] \[\sqrt{r^{2}-x^{2}}\left(2\sqrt{r^{2}-x^{2}}+\frac{-2x^{2}}{\sqrt{r^{2}-x^{2}}}\right)=0\left(\sqrt{r^{2}-x^{2}}\right)\] \[2\left(r^{2}-x^{2}\right)-2x^{2}=0\] \[2r^{2}-4x^{2}=0\] \[2r^{2}=4x^{2}\] \[x^{2}=\frac{1}{2}r^{2}\] \[x=\pm\sqrt{\frac{1}{2}r^{2}}=\pm\sqrt{\frac{1}{2}}r\] \[\mbox{Rewrite the square root of the fraction using proper notation}\] \[x=\pm\sqrt{\frac{1}{2}}r=\pm\frac{\sqrt{1}}{\sqrt{2}}r=\pm\frac{1\sqrt{2}}{\sqrt{2}\sqrt{2}}r=\pm\frac{\sqrt{2}}{2}r\] The derivative also does not exist at two points where the original function exists. These are the endpoints of the semicircle. If we were to consider these point as possible value for the rectangle, the area of the rectangle would be \(0\) since the endpoints are on the \(x\) axis; therefore, we can ignore them. If you are interested, these point can be found by setting the denominator of the second term in the derivative to \(0\). \[\]
- Determine whether the critical points are either a maxima or a minima \[\] We will do this using the second derivative test. Before we do that, let's make our lives easier and let \(u=r^{2}-x^{2}\) \[\mbox{Find the second derivative}\] \[A''\left(x\right)=\frac{2\left(-2x\right)}{2\sqrt{u}}+\frac{-4x\left(\sqrt{u}\right)-\left(-2x^{2}\right)\frac{u'}{2\sqrt{u}}}{\sqrt{u}^{2}}\] \[u'=-2x\] \[A''\left(x\right)=\frac{-4x}{2\sqrt{r^{2}-x^{2}}}+\frac{-4x\left(\sqrt{r^{2}-x^{2}}\right)-\left(-2x^{2}\right)\frac{-2x}{2\sqrt{r^{2}-x^{2}}}}{r^{2}-x^{2}}\] \[=\frac{-4x}{2\sqrt{r^{2}-x^{2}}}+\frac{-4x\sqrt{r^{2}-x^{2}}-\frac{2x^{3}}{\sqrt{r^{2}-x^{2}}}}{r^{2}-x^{2}}\] \[\mbox{Find \(A''(\frac{\sqrt{2}}{2}r)\) and \(A''(-\frac{\sqrt{2}}{2}r)\)}\] \[A''\left(\frac{\sqrt{2}}{2}r\right)=\frac{-4\frac{\sqrt{2}}{2}r}{2\sqrt{r^{2}-\frac{1}{2}r^{2}}}+\frac{-4\frac{\sqrt{2}}{2}r\sqrt{r^{2}-\frac{1}{2}r^{2}}-\frac{2\frac{\sqrt{2}}{2}r}{\sqrt{r^{2}-\frac{1}{2}r^{2}}}}{r^{2}-\frac{1}{2}r^{2}}\] Since the radius of a circle is is always greater than \(0\), let \(r=1\) to determine whether the above number is positive or negative. \[A''\left(\frac{\sqrt{2}}{2}\right)=\frac{-4\frac{\sqrt{2}}{2}}{2\sqrt{1^{2}-\frac{1}{2}1^{2}}}+\frac{-4\frac{\sqrt{2}}{2}\sqrt{1^{2}-\frac{1}{2}1^{2}}-\frac{2\frac{\sqrt{2}}{2}}{\sqrt{1^{2}-\frac{1}{2}1^{2}}}}{1^{2}-\frac{1}{2}1^{2}}\] \[=\frac{-2\sqrt{2}}{2\sqrt{\frac{1}{2}}}+\frac{-4\frac{\sqrt{2}}{2}\sqrt{\frac{1}{2}}-\frac{2\frac{\sqrt{2}}{2}}{\sqrt{\frac{1}{2}}}}{\frac{1}{2}}\] \[\mbox{Remember \(\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)}\] \[=\frac{-2\sqrt{2}}{2\frac{\sqrt{2}}{2}}+\frac{-4\frac{\sqrt{2}}{2}\frac{\sqrt{2}}{2}-\frac{2\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}}{\frac{1}{2}}\] \[=-2+\frac{-2-2}{\frac{1}{2}}=-2+2\left(-4\right)=-10\] \[\] \[A''\left(-\frac{\sqrt{2}}{2}\right)=\frac{-4\left(-\frac{\sqrt{2}}{2}\right)}{2\sqrt{1^{2}-\frac{1}{2}1^{2}}}+\frac{-4\left(-\frac{\sqrt{2}}{2}\right)\sqrt{1^{2}-\frac{1}{2}1^{2}}-\frac{2\left(-\frac{\sqrt{2}}{2}\right)}{\sqrt{1^{2}-\frac{1}{2}1^{2}}}}{1^{2}-\frac{1}{2}1^{2}}\] \[=\frac{2\sqrt{2}}{2\sqrt{\frac{1}{2}}}+\frac{4\frac{\sqrt{2}}{2}\sqrt{\frac{1}{2}}-\frac{-2\frac{\sqrt{2}}{2}}{\sqrt{\frac{1}{2}}}}{\frac{1}{2}}\] \[=\frac{2\sqrt{2}}{2\frac{\sqrt{2}}{2}}+\frac{4\frac{\sqrt{2}}{2}\frac{\sqrt{2}}{2}+\frac{2\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}}{\frac{1}{2}}\] \[=2+\frac{2+2}{\frac{1}{2}}=2+2\left(4\right)=10\] Since \(x=\frac{\sqrt{2}}{2}\) results in a negative number, \(x=\frac{\sqrt{2}}{2}r\) would've also result in a negative number. Therefore, \(x=\frac{\sqrt{2}}{2}r\) will be a local maximum. Since \(x=-\frac{\sqrt{2}}{2}\) results in a positive number, \(x=-\frac{\sqrt{2}}{2}r\) would've also result in a positive number. Therefore, \(x=-\frac{\sqrt{2}}{2}r\) will be a local minimum.
Therefore, for the rectangle with the largest area, the value of \(x\) will be \(\frac{\sqrt{2}}{2}r\).
The dimensions of the largest rectangle:
\[A\left(x\right)=2xy=2x\sqrt{r^{2}-x^{2}}\]
\[A\left(\frac{\sqrt{2}}{2}r\right)=\sqrt{2}r\sqrt{r^{2}-\frac{1}{2}r^{2}}=\sqrt{2}r\sqrt{\frac{1}{2}r^{2}}\] \[=\sqrt{2}r\frac{\sqrt{2}}{2}r=2r^{2}\]