Examples Coming Soon!
Basic Rules of Differentiation:
\[\frac{d}{dx}\left(c\right)=0\]
\[\frac{d}{dx}\left(x^{n}\right)=nx^{n-1}\]
\[\frac{d}{dx}\left(cf\left(x\right)\right)=c\frac{d}{dx}f\left(x\right)\]
\[\frac{d}{dx}\left[f\left(x\right)\pm g\left(x\right)\right]=\frac{d}{dx}f\left(x\right)\pm\frac{d}{dx}g\left(x\right)\]
\[\mbox{Product Rule: } \frac{d}{dx}\left[f\left(x\right)\cdot g\left(x\right)\right]=f'\left(x\right)g\left(x\right)+f\left(x\right)g'\left(x\right)\]
\[\mbox{Quotient Rule: } \frac{d}{dx}\left[\frac{f\left(x\right)}{g\left(x\right)}\right]=\frac{f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)}{\left(g\left(x\right)\right)^{2}}\]
\(\mbox{Higher Order Derivatives:}\) \begin{array} {|r|r|}\hline \mbox{First Derivative} & y' \mbox{ or }\frac{dy}{dx} \\ \hline \mbox{Second Derivative} & y''\mbox{ or }\frac{d^{2}y}{dx^{2}} \\ \hline \mbox{Third Derivative} & y'''\mbox{ or }\frac{d^{3}y}{dx^{3}} \\ \hline \mbox{Fourth Derivative} & y^{(4)}\mbox{ or }\frac{d^{4}y}{dx^{4}} \\ \hline n^{th}\mbox{ Derivative} & y^{(n)}\mbox{ or }\frac{d^{n}y}{dx^{n}} \\ \hline \end{array}
\[\] Normal Line: the line perpendicular to the tangent line. \[m_{normal}=-\frac{1}{m_{tangent}}\]
Find \(\frac{dy}{dx}\) given that \(y=\left(3x^{2}+2x\right)\left(4x+1\right)\).
Find the equations of the tangent line and the normal line to the curve \(y=x^{2}\sqrt{x^{3}}\) at the point \((1,1)\).
Let \(u\) and \(v\) be function of \(x\) that are differentiable at \(x=-2\). Given that \(u(-2)=3\), \(u'(-2)=5\), \(v(-2)=-4\), and \(v'(-2)=2\), find the value of the following derivative at \(x=-2\).
\[\left.\frac{d}{dx}\right|_{x=-2}\left(6v+3uv\right)\]
Let \(u\) and \(v\) be function of \(x\) that are differentiable at \(x=4\). Given that \(u(4)=1\), \(u'(4)=-4\), \(v(4)=6\), and \(v'(4)=3\), find the value of the following derivative at \(x=4\).
\[\left.\frac{d}{dx}\right|_{x=4}\Bigg(\frac{v+2}{3u}+vx^{3}\Bigg)\]
Find the \(y'''\) of \(\sqrt{x^{3}}\).
Find \(f'\left(4\right)\) given that \(f\left(x\right)=\frac{x^{2}+3}{\sqrt{x}+2x}\).
For what values of \(x\) does the function \(f\left(x\right)=4x^{3}+15x^{2}-72x+6\) have a horizonatal tangent line?
Find the points on the graph of \(f\left(x\right)=x^{2}+3\) where the tangent line intersects the point \((0,-1)\).
Therefore, the tangent line at \((2,7)\) and \((-2,7)\) will intersect the point \((0,-1)\).
The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create content.
A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!
Headings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.