Reference
Formula: \[f’(x)=\mathop {\lim}\limits_{h \to 0} \frac{f\left(x+h\right)-f\left(x\right)}{h}\] \[\] An alternate form of the derivative: \[f’(a)=\mathop {\lim}\limits_{x \to a}\frac{f\left(x\right)-f\left(a\right)}{x-a}\]\[\]Point-slope form line equation: \[y-y_{1}=m\left(x-x_{1}\right)\] Tangent Line: a line that touches the curve at a point where the curve's instantaneous rate of change is equivalent to the slope of the line.
You may have to scroll left and right to the see full equation.
All graphs are interactive.
EX 1
Find the derivative of \(f\left(x\right)=x^{2}+4x+4\).
Using the formula:
\[f’(x)=\mathop {\lim}\limits_{h \to 0}\frac{\left(x+h\right)^{2}+4\left(x+h\right)+4-x^{2}-4x-4}{h}=\]\[\mathop {\lim}\limits_{h \to 0}\frac{x^{2}+2xh+h^{2}+4x+4h+4-x^{2}-4x-4}{h}=\]\[\mathop {\lim}\limits_{h \to 0}\frac{2xh+h^{2}+4h}{h}=\mathop {\lim}\limits_{h \to 0}(2x+h+4)=2x+4\]
EX 2
Find \(f’(x)\) given that \(f(x)=\frac{4}{x}\).
Using the formula:
\[f’(x)= \mathop {\lim}\limits_{h \to 0} \frac{\frac{4}{x+h}-\frac{4}{x}}{h}=\] \[\mathop {\lim}\limits_{h \to 0}\frac{\frac{4\left(x\right)}{\left(x+h\right)\left(x\right)}-\frac{4\left(x+h\right)}{\left(x+h\right)\left(x\right)}}{h}=\]\[\mathop {\lim}\limits_{h \to 0}\frac{\frac{4\left(x\right)-4\left(x+h\right)}{\left(x+h\right)\left(x\right)}}{h}=\mathop {\lim}\limits_{h \to 0}\frac{4\left(x\right)-4\left(x+h\right)}{\left(x+h\right)\left(x\right)\left(h\right)}=\]\[\mathop {\lim}\limits_{h \to 0}\frac{4x-4x+4h}{\left(x+h\right)\left(x\right)\left(h\right)}=\mathop {\lim}\limits_{h \to 0}\frac{4h}{\left(x+h\right)\left(x\right)\left(h\right)}=\]\[\mathop {\lim}\limits_{h \to 0}\frac{4}{\left(x+h\right)\left(x\right)}=\mathop {\lim}\limits_{h \to 0}\frac{4}{x^{2}+h}=\frac{4}{x^{2}}\]
EX 3
Find \(f'\left(4\right)\) given that \(f(x)=\sqrt{x}\).
Using the formula:
\[f’(x)= \mathop {\lim}\limits_{h \to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}=\]\[\mathop {\lim}\limits_{h \to 0} \frac{\left(\sqrt{x+h}-\sqrt{x}\right)\left(\sqrt{x+h}+\sqrt{x}\right)}{h\left(\sqrt{x+h}+\sqrt{x}\right)}=\] \[\mathop {\lim}\limits_{h \to 0} \frac{x+h-x}{h\left(\sqrt{x+h}+\sqrt{x}\right)}=\mathop {\lim}\limits_{h \to 0} \frac{h}{h\left(\sqrt{x+h}+\sqrt{x}\right)}=\] \[\mathop {\lim}\limits_{h \to 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2\sqrt{x}}\]\[\therefore\] \[f’(4)=\frac{1}{2\sqrt{4}}=\frac{1}{2}\]
EX 4
Find the equation of the tangent line to the parabola \(y=2x^{2}-5x+3\) at the point \(x=1\).
- Find the derivative \[f'(x)=\mathop {\lim}\limits_{h \to 0}\frac{2\left(x+h\right)^{2}-5\left(x+h\right)+3-2x^{2}+5x-3}{h}=\] \[\mathop {\lim}\limits_{h \to 0}\frac{2x^{2}+4xh+2h^{2}-5x-5h+3-2x^{2}+5x-3}{h}=\] \[\mathop {\lim}\limits_{h \to 0}\frac{4xh+2h^{2}-5h}{h}=\mathop {\lim}\limits_{h \to 0}(4x+2h-5)=4x-5\]
- Substitute the \(x\)-coordinate into the derivative to find \(m\) \[m=f'(1)=4-5=-1\]
- Find the \(y\)-coordinate \[f(1)=2-5+3=0\]
- Write the equation of the tangent line at the point \[y-0=-1\left(x-1\right)\]\[y=-x+1\]
EX 5
Find the equation of the tangent line to \(y=\frac{5}{1+x^{2}}\) at the point \(x=2\).
- Find the derivative \[f'\left(x\right)=\mathop {\lim}\limits_{h \to 0}\frac{\frac{5}{1+\left(x+h\right)^{2}}-\frac{5}{1+x^{2}}}{h}=\]\[\mathop {\lim}\limits_{h \to 0}\frac{\frac{5}{1+x^{2}+2xh+h^{2}}-\frac{5}{1+x^{2}}}{h}=\]\[\mathop {\lim}\limits_{h \to 0}\frac{\frac{5\left(1+x^{2}\right)-5\left(1+x^{2}+2xh+h^{2}\right)}{\left(1+x^{2}+2xh+h^{2}\right)\left(1+x^{2}\right)}}{h}=\]\[\mathop {\lim}\limits_{h \to 0}\frac{5+5x^{2}-5-5x^{2}-10xh-5h^{2}}{\left(1+x^{2}+2xh+h^{2}\right)\left(1+x^{2}\right)h}=\]\[\mathop {\lim}\limits_{h \to 0}\frac{-10xh-5h^{2}}{\left(1+x^{2}+2xh+h^{2}\right)\left(1+x^{2}\right)h}=\]\[\mathop {\lim}\limits_{h \to 0}\frac{-10x-5h}{\left(1+x^{2}+2xh+h^{2}\right)\left(1+x^{2}\right)}=\]\[\frac{-10x}{\left(1+x^{2}\right)^{2}}\]
- Substitute the \(x\)-coordinate into the derivative to find \(m\) \[m=f'(2)=\frac{-10\left(2\right)}{\left(1+\left(2\right)^{2}\right)^{2}}=\frac{-20}{25}-\frac{4}{5}\]
- Find the \(y\)-coordinate \[f(2)=\frac{5}{1+4}=1\]
- Write the equation of the tangent line at the point \[y-1=-\frac{4}{5}\left(x-2\right)\]\[y=y=-\frac{4}{5}x+\frac{13}{5}=\frac{13-4x}{5}\]
EX 6
Using the alternate form of the derivative find \(f'(2)\) of \(\sqrt{x+2}\).
Using the formula:
\[f'\left(2\right)=\mathop {\lim}\limits_{x \to 2}\frac{\sqrt{x+2}-2}{x-2}=\]\[\mathop {\lim}\limits_{x \to 2}\frac{\left(\sqrt{x+2}-2\right)\left(\sqrt{x+2}+2\right)}{\left(x-2\right)\left(\sqrt{x+2}+2\right)}=\mathop {\lim}\limits_{x \to 2}\frac{x+2-4}{\left(x-2\right)\left(\sqrt{x+2}+2\right)}=\]\[\mathop {\lim}\limits_{x \to 2}\frac{x-2}{\left(x-2\right)\left(\sqrt{x+2}+2\right)}=\mathop {\lim}\limits_{x \to 2}\frac{x-2}{\left(x-2\right)\left(\sqrt{x+2}+2\right)}=\]\[\mathop {\lim}\limits_{x \to 2}\frac{1}{\left(\sqrt{x+2}+2\right)}=\frac{1}{2}\]
EX 7
Find the equation of the tangent line to the parabola \(y=3x^{2}-2x+9\) at the point \(x=2\) using the alternate form of the derivative.
- Find \(m\) using the formula \[f'\left(2\right)=\mathop {\lim}\limits_{x \to 2}\frac{3x^{2}-2x+9-3\left(2\right)^{2}+2\left(2\right)-9}{x-2}=\]\[\mathop {\lim}\limits_{x \to 2}\frac{3x^{2}-2x-8}{x-2}=\mathop {\lim}\limits_{x \to 2}\frac{\left(x-2\right)\left(3x+4\right)}{x-2}=\]\[\mathop {\lim}\limits_{x \to 2}\left(3x+4\right)=10\] \[\therefore\] \[m=10\]
- Find the \(y\)-coordinate \[f\left(2\right)=3\left(2\right)^{2}-2\left(2\right)+9=17\]
- Write the equation of the tangent line at the point \[y-17=10\left(x-2\right)\] \[y=10x-20+17=10x-3\]